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1. Introduction. 

A c u r E n t  problem i n  control theory is t h a t  of e s t i m t i n g  the dyna- 
mical state of a physical system, on the basis of d a t a  perturbed by noise. 

Solution of the estimation problem i s  usually immediate i f  one knows the 

probabi l i ty  dis t r ibut ion of the system s t a t e  at  each instant  of time, con- 

d i t i ona l  on the  data available up t o  t h a t  instant.  It is therefore of in- 

t e r e s t  t o  ask how this poster ior  probability d is t r ibu t ion  evolves with time, 

and i f  possible t o  specify the  dynamical structure of a filter (i.e. analog 

device) which generates t h e  poster ior  dis t r ibut ion when its input i s  the time 
function ac tua l ly  observed. 

I n  the present report, filters of t h i s  type are defined by m e a n s  of 
h 

stochastic d i f f e ren t i a l  equations' f o r  the posterior d i s t r ibu t ion  i n  which 

the observed time function appears as a forcing t e r m .  Di f fe ren t ia l  equations 

f o r  t h i s  purpose were introduced i n  1960 by Stratonovich [l], who a l so  in- 

dicated t h e i r  application t o  stochastic control problems 121. 
mical system under observation is  l inear  and the noise is white Gaussian it 
has been shown 131 that Stratonovich's equation can be solved formally t o  

yield the stochastic d i f f e ren t i a l  equation of the optimal (linear) f i l ter .  

When the function t o  be estimated is  a bhrkov s t ep  process and the noise is 

white Gaussian the optimal (nonlinear) f i l t e r  equations were s ta ted  i n  [4]. 

The la t ter  equations are discussed i n  more d e t a i l  i n  sect. 3, below; they 
d i f f e r  from those of Stratonovich i n  a sense t o  be noted i n  the  sequel. For 

one example, discussed i n  sect. 3, performance of the optimal nonlinear f i l t e r  

i s  evaluated numerically and is found t o  be substant ia l ly  better than that of 

the simpler Wiener f i l t e r .  

When the dyna- 

1. This research was supported i n  part by the United States  A i r  Force through 
the A i r  Force Office of Scient i f ic  Research, 
and i n  part by the National Aeronautics and Space 

under Contract No. 

2. A br ief  review of stochastic d i f fe ren t ia l  equations is  given i n  Appendix 1. 
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I n  sect. 4, the equations of sect. 3 a E  generalized heur i s t ica l ly  

t o  the case where the state space of the s tep  process i s  continuous, and 
i n  sect.  5 some tentat ive remarks are made on the  form of the solutions. 

Some para l le l  work on noisy observation of a diffusion process M l l  be 

reported by Kushner i n  a forthcoming paper [5] .  

2. NoisY measurement of an unknown constant. 

The basic idea of a 'functioml'  f i l t e r  is i l l u s t r a t e d  by the follow- 

i n g  simple estimation problem. L e t  x be a discrete,  real-valued random 

al, . . ., a variable with range of values 

bution (p.(O), j = 1, ..., K} a t  t = 0. Suppose that one observes the 

function 

a d  a p r i o r i  probabili ty distri- H 

J 

U 

where the  function p is known t o  the observer? and ( w ( t ) ,  t 2 O ) , i s  a 
Wiener process which is  independent of x, with P(w(0) = 0 )  = 1. The pro- 

cess y ( t )  

d i f f e ren t i a l  eqmtion 

defined by (1) can a l s o  be written as the solution of the stochastic 

dy( t )  = x d t  + p( t )dw( t ) ,  y(0) = 0. (2 1 

Dividing formally by d t  one obtains the possibly more familiar version 

where G represents Gaussian white noise. Since w i s  not different iable  

i n  the ordinary sense we shall use instead the d u f e r e n t i a l  notation of (2) 

and interpret  (2)  as an equation of Ito 's  type (Appendix 1). 

3.  We shall assume that p i s  continuously differentiable,  and bounded away 
from 0 f o r  t 2 0. 
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kt us now introduce the posterior dis t r ibut ion 

p,(t)  = P(X = aJly(s) ,  o 5 s s t},  j = 1, ..., K. (4) 

4 Evaluation of p (t) is straightforward (see ~ p e n d i x  2); the resut is 
3 

A A 

The stochastic in tegra l  i n  ( 5 )  is well-defined (E61 IX,$2) . 
p ( t )  = [p,(t), ..., pK( t ) l  and consider the joint  process 
where w e  resrd x as a fixed random variable with dis t r ibut ion 

(pj(0), 
the s a m  is t r u e  of the p ( t )  s a m p l e  functions (by [6] M, Thm. 5.2). More- 

mer, it is e a s i l y  seen (Appendix 3) that the 

Now write 

(x, p( t ) ,  t 2 03, 

j=l, ..., K). Since almost every w ( t )  sample function is continuous 

(x, p ( t ) }  process is  l&rkov. 

Our a i m  is t o  describe the evolution i n  time of the  p 's by means 
j 

of a system of stochastic d i f f e r e n t i a l  equstions. 
of the limits (8) and (9 )  written below, one can apply t o  the lkrkov process 

(x, p ( t ) ]  

Having verif ied the existence 

a representation theorem of Doob (161 V I ,  Tm. 3 . 3 ) .  Alternatively, 

since the p (t) are 

of Dynkin (Appendix 1 
J known explicit ly,  it is more di rec t  t o  apply a result 

!Che functions m and u i n  (6) tl 3 

5, 4 = lim 
h -so 

and 

7.2), a d  t h i s  gives 

a,[%, X, p(t)]dw(t), J = 1, ..., K. (6 )  

have the interpretat ion 

4. 
probabi l i t ies  is t o  be understood. 

The qml i f i ca t ion  'with probability 1' on equal i t ies  between conditiom.1 



i, j = 1, ..., K. 

I n  Appendix 3 the  limits (7) and (8) are computed from ( 5 ) ,  using Dynkin's 

formulas; the  results are 

( j  = 1, ..., K), where 

K 

W r i t i n g  out (6) i n  fu l l  and noting ( 2 ) ,  we obtain f i n a l l y  

j = 1, ..., K. 
The system of stochastic d i f f e ren t i a l  equations (12) is  the desired 

It can be interpreted as specifying the structure of a f i l t e r  (or  result. 

ideal analog device ) which continuously generates the posterior dis t r ibut ion 

p ( t )  when the input i s  the observed function y( t ) .  F r o m  a prac t ica l  view- 

point t h i s  interpretation m i g h t  be useful when the  function actual ly  observed 

is not y, but rather s o w  approximation t o  the 'f'unction' 9 indicated i n  

(3) .  In  that case formal division by d t  i n  (E) yields a system of nonlinear 

d i f f e ren t i a l  equations f o r  the p 's, i n  which 9 appears as a forcing term. 

This system of equations defines the f i l t e r .  
J 
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Example. 
cannot be applied t o  the stochastic equation (12) i n  an  attempt t o  regain 

the  expl ic i t  solution (5) .  To illustrate th i s  f ac t  l e t  x have possible 

values a1 = + 1, 
p,(t) + p2(t)  3 1 

It is  worth emphasizing that the ordinary rules of integration 

p s 1. Since 1 a2 = - 1 and let p1(0) = p2(0) = F, 
it is suff ic ient  t o  consider 

P r o m  (ll), x(t)  = q(t) ;  and fran (12) the filter is defined by 

dq = - q ( l  - q 2 )at  + (1 - q 2 )dye 

On the other hand (4) yields the evaluation 

q i t j  = tanh [ y ( t j i  

and formal different ia t ion of (13) gives 

2 dq = (1 - q )dye 

W e  observe that the f i r s t  t e r n  on tb 

The point i s  not only t h a t  stochastic (16). 

(15 j 

r ight  side of (14) is absent fran 

d i f f e ren t i a l  equations of I t 0  

type cannot be manipulated by the usual f o n d -  rules (cf. 161 M, $3)  but 

a l s o  that an analog device f o r  genemting q should be set up according t o  

the It0 eqmtion (14), and not according t o  the 'formal' equation (16). 3 

It must be noted f i m l l y  tha t  Stratonovich's procedure 111 applied t o  

t h i s  example leads t o  (16) and not t o  (14) (cf. 121, eq, (9)). 

5. The I t 0  equation (14) is solved (Appendix 1) by replacing (14) by an 
in tegra l  equation and constructing the solution q by successive 
approximations. The structure of the analog feedback device should be chosen 
t o  m o d e l  that of the successive approximation scheme, Whether o r  not physical 
analog devices can actual ly  be bu i l t  t o  operate i n  this way on ' w h i t e '  noise 
(i.e. wideband random inputs) is  a question open t o  investigation. 
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3. Noisy observations of a mrkov s tep  process. 

(x( t ) ,  t h 0), L e t  be a stat ionary mrkov s tep  process with a 

Denote the t rans i t ion  K' f i n i t e  number of s t a t e s  (step l e v e h )  

probabili t ies by 

al, ..., a 

pij(h) = P(x(t  + h) = a j ] x ( t )  = ai}. 

We assume that 
1 - vih + o(h), j = i (h + O )  

ViJh + o(h), j # i (h 4 
P i p  = 

where the  v h 0 are constants and 
i j  

K 
vi = c vis, i = 1, ..., K. 

3=1 

L e t  the dis t r ibut ion of x(0) be ( p  (0), j = 1, ..., K). J 
As i n  sect. 2, suppose that the grocess observed is  (y( t ) ,  t 2 0) defined by 

dy(t)  = x( t )d t  + p(t)aw(t), t 2 0, (19) 

where P(y(0) = 0) = 1 and the Wiener process ( w ( t ) ,  t B 0) is  independent 

of the x ( t )  process. Introduce the posterior probabi l i t ies  

p j ( t )  = P(x(t)  = aj ly(s) ,  o B s 6 t), 

j = 1, ..., K. 

As before, w e  seek a stochastic d i f f e ren t i a l  equation f o r  the p . ( t ) .  

The appropriate generalization of (12) is obtained i n  Appendix 4; the result 

is 

J 

. For a complete discussion see [61 VI, $1, where our vi, vi a re  denoted 
:y qi, qij. The x ( t )  processtcan be defined so as t o  be sepaLble and 
measurable, integrals such as 1 x(s)ds are then well-defined random variables. 

0 



Eq. (21) can be interpreted as specifying the structw of an ideal 

analog device f o r  generating the p c s  from the data, y. Compsrison of 

(21) w i t h  (12) shows that the only novel feature of (U) is the f i rs t  t e r n  
on the r ight side. This term is of the forn d + [ p ] d t  &ere x+ is tfie 

forward operator of the x ( t )  process, and thus represents a change i n  p 

due t o  the observerrs a p r i o r i  knowledge of how the x ( t )  process evolves. 

W e  shall now discuss a simple special  case of (21) i n  detail. 

Example. kt f3 E const. and suppose that x is  a 'random telegraph signal' 

tu]; that is, 

al = +1, a 2 = - 1  (22) 

vi = vij = v,  i, j = 1, 2. 

The prameter v is  the expected number of jumps of x ( - )  i n  unit t i m e .  kt 

or  equivalently 

2 2 
dq = [-2yq - f302(1 - q )(q - x)]dt + f301(1 - q )dw. 



We shall evaluate the f i l t e r  performance i n  terms of mean square 

estimation error. ~ h u s  the optimal estimate of x ( t )  i s  

Now consider the joint  Ma.rkov process 

assumed that t h i s  process has stationary densi t ies  $(q), -1 d q 4 1, de- 

fined by 

{x(t), q ( t ) ,  t 2 0 ) .  It will be 

Then the mean square estimation e r ro r  is  
1 

-1 -1 

+ 
It remains t o  calculate the densi t ies  T-. By inspection of (25) ,  the 

s ta t ionary Kolmogorov equation of the {x, q} process is  

+ 
where ( * )  denotes d/dq. With the  symmetry condition T-(q) = T (+I ,  (29) has 
the unique solution 

(30) Tz(q) = c ( 1  3 q)-'exp[- 2 ) ~ ( 1  - q 2 -1 I 

whe re 

1 
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and 
2 p = p v .  

From (28),  (30) the stationary e r ro r  variance i s  then 

0 

2 It is easy t o  show that u + O  as p + O ,  and t h a t  

The resu l t  (33) will be compared with the e r ror  variance of a Wiener f i l t e r  

which is  optimal f o r  the same input. For the Wiener filter a standard com- 

putation yields 

(35) 

Numerical results are given i n  Fig. 1. 

the  estimate defined by (26) it i s  necessarily optimal (with respect t o  e r ror  

variance) i n  the class  of a l l  filters which operate on the present and past 

of the data y. Thus u S aw2 and i n  f a c t  u2 is substantially less than 

Since the nonlinear f i l t e r  generates 

2 

except when the noise leve l  is very high. 
uW 

4. Generslization t o  continuous s ta te  space. 

The d i f f e ren t i a l  equations (U), ( U )  were derived on the  assumption 

that the state space of the 

is a heuris t ic  generalization t o  a continuous state space. Let  

{x( t ) ,  t B 0 )  be a real-valued m r k w  ste~p process with state space X, 

x ( t )  process is  a finite set. The following 
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where X is a closed f i n i t e  interval. Let v ( E ) ,  ~ ( 5 ,  A) be defined f o r  

5 i n  X and A a Bore1 subset of X; the f’unctions v ( * ) ,  v ( * , * )  are 

assumed t o  be a ‘standard pa i r ’  i n  the sense of Doob [6] V I ,  52.6 

t ion,  v ( * )  is assumed t o  be bounded on X; the  x ( t )  sample functions 

are then almost a U  s t ep  functions [61. 

I n  addi- 

In analogy t o  (17) one has 

As i n  sect. 3, suppose next that  

dy ( t )  = x ( t ) d t  + p( t )dw( t ) ,  t 2 0, 

and introduce the  posterior probability 

Then inspection of (21) suggests the generalization 

(37)  

6. The functions v are denoted i n  [61 by q. 



and A i s  an a rb i t ra ry  Bore1 subset of X. 

Just as i n  the case of a ( f in i t e -d iuens io r l )  It0 equation, (39) 
might plausibly be interpreted by s tar t ing fran the corresponding in tegra l  

equation, obtained by integrating both sides of (39) with respect t o  t, 
and defining the solution as the l i m i t  of successive approximations. Un- 

like (12) and (21), however, t he  general equation (39)  cannot readily be 

interpreted as specifying the dynamics of a pract ical ly  realizable f i l t e r  

f o r  generating p from the data y. 

5. Sufficient statistics. 

We have seen i n  sect. 4 t h a t  the stochastic d i f f e ren t i a l  equation 

f o r  t h e  posterior distribution of 

t o  design an  optirrral f i l ter .  

dis t r ibut ion must be reduced t o  the evaluation of a 'small' number of func- 

t iona ls  (sufficient s t a t i s t i c s )  on the observed function y. For example, 

inspection of ( 3 )  shows t h a t  the  K-dimensional stochastic system (12) can be 

replaced by the l-dimensional system 

x ( t )  cannot be used directly,  i n  general, 

I n  practice, construction of the posterior 

which generates the suff ic ient  s t a t i s t i c  

On the  other hand the writer knows of no s i m i l a r  reduction of the system (21) 

or of (39) .  

Even i f  a nontrivial  sufficient s t a t i s t i c  z ( t )  f o r  the determination 

of p exis ts ,  it may be impossible t o  write z as an exp l i c i t  functional of 

y. It would be enough t o  know, however, that z s a t i s f i e s  a stochastic 

d i f fe ren t ia  1 equation 



where the functions Cl, c2 are known; then i n  principle z could be obtained 

as the  output of an  analog device set  up according t o  (43). 
'solution' of a n  equation of type (21), (39) might take the form of a (known) 

function of a s t a t i s t i c  which satisfies a (known) equation of type (43). 
The investigation of solutions of this type (if they e x i s t )  would be of con- 

siderable interest .  

Thus the  

z 



Appendix 1. Stochastic d i f fe ren t ia l  equations. 

1. Since stochastic differential  equations are not y e t  widely used i n  

engineering applications we sunmarize here some definitions and known re- 

sults. For a detailed account the reader is referred t o  Doob [6] VI ,  $3, 
and Dynhin [TI, Chs. 7 and 11. 

Let {z(t) ,  t 2 0) be a stochastic process i n  K-dimensional 

Euclidean space RK; we write z = (zl, . . . , zK), where the zi are real- 
valued, and put a Wiener process llzII = (Z z 2)1/2. kt ( w ( t > ,  t 2 0 )  - i  - 

J (Brownian motion processf i n  R ; that  is, w(t) = [wl(t), ..., w,(t)] where 

the w. (t) aire independent Wiener processes i n  R1 and, f o r  t 2 s 2 0, 
1 

= 0, j + i. 
(See [6] IC, $9 f o r  the definit ion of the Wiener process i n  R1). 

The stochastic d i f fe ren t ia l  equation of in te res t  here i s  written 

w h e r e  m is a K-vector and u is a K X J matrix. Loosely interpreted, 

(45) s t a t e s  t h a t  i n  a small time interval ( t ,  t + a t )  the vector z ( t )  

suffers a 'dynamical' displacement m[t, z ( t ) ]d t  plus a random displacement 

u[ t ,  z(t)]dw(t), 
and covariance matrix a[t, z(t)]u '[ t ,  z ( t ) ]d t  ( ' denotes transpose). 

w h e r e  the l a t t e r  i s  a Gaussian random vector with mean 0 

Dividing both sides of (45) formally by d t  one obtains 

i = m ( t ,  z) + a(t, z)ir ( 0  = ii/dt) (46) 

where G is  a J-vector whose components are independent 'Gaussian w h i t e  noise 

processes'. The notation of (4.6) has been mom common i n  the engineering 
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l i t e m t u r e  than  t h a t  of (43) but it i s  objectionable f o r  t w o  reasons: 

(a) Almost a l l  w ( t )  sample functions a r e  nondifferentiable 

almost everywhere, a f a c t  which is  in tu i t i ve ly  plausible 

i f  we  note that Elldw(t)ll i s  proportional t o  (dt)3. 
1 

(b) When applied t o  (46) the usual f o m l  rules of integration 

lead i n  general t o  resu l t s  which are def in i te ly  incorrect. 

This statement will be illustrated la te r .  

2. The stochastic d i f f e ren t i a l  equation (45) does not specify the value 
of a derivative. 
f o r  constructing the solution, and then has meaning only insofar  as t h i s  

construction can be carried out (cf. Gihman [91). 
of (45) due t o  I t o  [81 i s  the following. 

equation 

The equation can be defined by giving an exp l i c i t  procedure 

An a l ternat ive interpretat ion 

Replace (45) by the  stochastic in tegra l  

The 

§5 1 
stochastic integrals  on the right side of (47) are defined ([6]  IX,  $2, 
under suitable res t r ic t ions  on the (random) functions m and u. Ita's 

construction of a z ( t )  

successive approximation; one se t s  z(O)(t)  E o a d  
process which s a t i s f i e s  (47) is carried out by 

0 t 

0 
+ I u[s, Z ( ~ ) ( S ) ] ~ W ( S ) ,  

n = 0,1,2, ... . 
Conditions under which the sequence {z (n)) converges fo r  t 
t e r v a l  

i n  a f i n i t e  in- 

[O, T I  a r e  given by Doob ( [61 IX, §3)7 and are,  mainly, that the 



functions m ( t ,  z), u(t, z )  s a t i s fy  a uniform Lipschitz condition i n  

z, and are bounded i n  nom by C ( l  + I l ~ 1 1 ~ ) '  where C is some constant. 

Then there  ex is t s  a process (Z(t), 0 d t d T} with the following proper- 

t i es  t 

1 

(i) l i m  ~ ( ~ ) ( t )  = z ( t )  uniformly i n  t with probabili ty 1, 
n +=  
and the z ( t )  process i s  essent ia l ly  unique. 

(ii) The z ( t )  sample functions are almost a l l  ccmtinuous i n  

10, TI. 

(iii) For each t c EO, TI, (47) is  true with probabili ty 1. 

( iv)  If' the i n i t i a l  value z(0) is  a random variable which is  

independent of the increments 

then ( z ( t ) ,  0 5 t S T) is a W r k w  process. 
(w(t,) - w(t l )>  tl, t2 E EO, TI) 

I n  addition, the z ( t )  process has the following local properties, 

which make precise the  interpretation of (43) given earlier: 

Cz.(t+h)-zi(t)]Cz 1 (t+h) - z (t)] 
h ( v i )  l i m  E( 

h + O  

= 2 ai,(% 0 u j r ( t ,  0 
r=l 

3. Assume f o r  the moment that  the hrkov process ( z ( t ) ,  0 5 t d T) con- 

structed above has a t rans i t ion  probability density p = p(s, z; t, 4), 
defined for 0 d s < t d T and 

hypotheses made on rn and u (strengthened t o  include the d i f f e ren t i ab i l i t y  

needed below) guaranteed that th density p ex is t s  and satisfies the 

Kolmogorov equatiors 

z, f E RK. It would be convenient if the 
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a K K  2 K 

- 2 = C b. .(s, z )  &- + C mi(s,  z)$ 
i=1 j=1 1 J  'i 'j i=l i 

Unfortunately it does not seem possible t o  es tab l i sh  (31) and (32) without 

making a pr ior i  assumptions on the smoothness of p (see the discussion i n  

[6] V I ,  $3). Nevertheless, i f  the z ( t )  process obtained by solving the 

I t 0  equation ( 4 5 )  has a t r ans i t i on  density which s a t i s f i e s  the Kolmogorov 

equations, then the coefficients which appear in the  l a t t e r  are related t o  

the functions rn and u of the It0 equation according t o  (49) -. (32) above. 

Used heurist ically,  t h i s  correspondence between (43) and (31), (32) is con- 

venient i n  engiEering applications (see e.g. [ lo]) .  

s 4. The following example shows that It0 equations cannot be manipulated 

by the ordinary rules of integration (cf. a l so  [6] , p. 4-43). 
be a Wiener process i n  R1 with P{w(O) = 0 )  = 1. Let  

Let {w(t), t I 0) 

It can be shown t h a t  the 

an It0 equation (43). From (49), (50)  w e  f ind  
z ( t )  process can be represented as the solution of 

so that 

dz ( t )  = $. z ( t ) d t  + z ( t ) d w ( t ) ,  t 2 0, (55)  

8. Suggested t o  the wri ter  by H. J. Kushner. 
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with i n i t i a l  condition 

placed by 

P(z(0) = 1) = 1. On the other hand i f  (55) i s  re- 

1 
2 i = z + ZG, z(0) = 1, 

and the last equation integrated formally, the result is  

$t + w ( t )  
z ( t )  = e . (57) 

5. It is u s e f a  t o  know under wfiat conditions a given process ($(t), t B 0 )  

can be represented as the  solution of a n  I t 0  equation (45) or  equivalently 

of the in tegra l  eqmtion (47). 
Doob (163 VI, Thm. 3.3) .  W e  w i l l  s t a t e  here a s l igh t ly  specialized version 

of a theorem of Dynkin ([TI ,  Thm. 7.2). 

One such representation theorem is  given by 

Theorem. kt the process ( z ( t ) ,  t 2 0) s a t i s f y  an in tegra l  equation of 

form - (47) [in p a r t i c a r  w e  can bve 
be a numerical function, twice continuously differentiable i n  (t, f )  f o r  

t 1 0  and 5 in R . Put q ( t )  I q[t, z ( t ) ] .  Then the process 

{$(t), t 2 0 )  

z ( t )  = w ( t ) l  and l e t  cp = q(t ,  f )  

- 
K - - - 

satisfies the in tegra l  equation 

The functions m" and a" a= given by r - 
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J 

Eq. (58) is (by defini t ion)  equivalent t o  the stochastic d i f f e ren t i a l  

e quat i on 

J 

r=l 
d$(t)  = m"[t, ~ ( t ) ]  d t  + C g [ t ,  z(t)]dwr(t). 

Eq. (62) i s  more general t k n  (45) i n  the sense that 

be expressible as functions of 

obtain a new system of the same type as before. 

m" and the 

however, by adjoining (62) t o  (45) w e  
Gr may not 

(t, I)); 

Firally,  it is seen that (62) can a l s o  be writ ten 

which exhibits the 'chain ru le '  expl ic i t ly .  
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Appendix 2. Derivation of ( 3 ) .  

Let t > O  be fixed and put s = rt/n, r = 0,1, ..., no It wi l l  rn 
be ver i f ied  that  (t), defined by 3 

is given by the expression on the  r ight  side of (5) ;  and then that 

ac tua l ly  the conditional probability p (t) defined by (4). Put 
(t) is 3 

3 
), (r=1, ..., n; n = 1,2, ...). Then f r o m  (1) 

r t /n  

Thus f o r  each n the random variables q, - xt/n, r = 1, ..., n, are 

independent and Gaussian with mean 0 and variance 
A &I 

Defining 

we have 
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By definit ion of the stochastic in tegra l  ([6] IX, $2) a d  the  continuity 

of P ( s ) - ~ ,  0 S s S t, there follows 

and 

From (67)-(69) it follows that 

( 5 ) .  
$.(t) coincides with the expression given by 

J 
It i s  c l ea r  t n a t  the same resu l t  is  obtained with any sequence 

(sm} such that 0 = son < sln < ... < sm = t (n =1,2, ...), and 

L e t  :qt be the 

variables y(s) ,  0 5 

note first  that 6 .(t 
that 0 5 s y  5 t and 

J 

smallest Borel f i e l d  with respect t o  which the random 

s 5 t, a r e  measurable. 'so see tha t  p . ( t )  = p . ( t )  
h 

J, J 
) is  cer ta inly measurable re la t ive t o  3t. Now suppose 

, that Av i s  a Bore1 subset of R , v = 1, ..., N. 

[y(sv) E Av, 

1 

If A is the event 

s Is t o  each of the se t s  (s . .., s ) (n = 1,2, ...), and including 

the 

v = 1, ..., N] then by adjoining the 

V nn 
y(s  ) as conditioning variables i n  ( 6 6 ) ,  we can write 

V 

Since s.(n) +Sj(t) i n  the mean w e  obtain, on l e t t i n g  n +m, J 

Since (71)  holds f o r  every A of the form described, it holds f o r  every A 

i n  the Borel f i e l d  'gt 
$ (t) 

(cf. 161 I, $7) .  That is, we have ver i f ied tha t  

has the defining properties of the conditional probabili ty p j ( t ) .  J 
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where  
1 
i 

Appendix 3 .  P r o p r t i e s  of the p ( t )  process (2). 

A simple computation from ( 5 )  shows that, f o r  0 < 7 < t, 

Consider the joint  process [x, p(t) ,  t 2 0) where x is  regarded 

as a fixed random variable with distribution 

p ( t )  depends only on x, p ( ~ ) ,  and the W(S) increments f o r  T < s < t. 
The Latter increments are independent of p ( ~ ) ,  and of x and the w(s) 

increments f o r  0 < s < T, on which p ( ~ )  depends. It follows tha t  the 

condi t ional  dis t r ibut ion of x, p ( t )  given x, p(s), o S s 5 IC, is  a func- 

t i on  of x, p(7) alore;  that is, the process [x, p( t ) ,  t Z 0) is Mrkov. 

(p .(O)). From (72), the  vector 
J 

The stochastic d i f f e ren t i a l  equation (7) f o r  the p ( t )  

established by applying either a representation theorem of Doob( [ 6 ]  
Thm. 3 .3 )  o r  a related theorem of Dynkin (["I, Thm. 7.2). 
theorem mentioned m u s t  be extended s l igh t ly  t o  take account of the f a c t  that 

only the  p(t)-canponent of the joint [x, p ( t ) )  process i s  of diffusion 

type (al ternat ively the constant component x can be regarded as a t r i v i a l  
dixfwion process). 

case. Frau ( 5 )  w e  see that  p . ( t )  is  of t he  form 

process can be 

VI, 
I n  e i the r  case the  

W e  shall apply Dydkin's theorem, extended t o  the present 

3 

t t 

0 0 
= J xp(s)-2ds + J p(s)'ldw(s) 

(74) 



and 
t - $ a2 J0p(.)-*ds] 

t . 
C Pk(b)exp[akz- a‘ p ( ~ ) - ~ d s ]  

k=l  2 k o  

(75 1 

Since Qi(ty z )  is  twice continuously differentiable i n  (t, z), there 

follows 
rl 

(Appendix 1 or 

The functions mjy u j  

m j ( t y  x, P) 

[TI, Thm. 7.2) 

t t 

are given by 

2 1 
2 + - p(t)-* a k(t, z )  

aZ2 J 

(77)  

u is expressed by (7) and (8). The ex- 3’ j 
The probabilist ic meaning of m 

pressions ( 9 )  and (10) a re  computed d i rec t ly  from (73), (77) and (78). 
the stochastic d i f f e ren t i a l  equation (12) is equivalent (by def ini t ion)  t o  the 

in tegra l  equation (76). 

Finally, 
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Appendix 4. Derivation of (21) . 
1. W e  f i rs t  evaluate p . ( t ) .  To simplify the writ ing of cer ta in  condi- 

t i o n a l  expectations it is  convenient t o  adjoin 

the {x(t) ,  w(t)) process, a 'dummy' step process {x"(t), t 101, defined 

t o  have the same range, i n i t i a l  distribution and t rans i t ion  probabili t ies 

as the  x ( t )  process, but independent of {x( t ) )  and {w(t)]. 

3 
t o  the probabili ty space of 

NOW l e t  sm = rt/n (r = 0,1, ..., n; n = 1,2, ...) and put 

and f o r  each fixed n the random variables 7, - Ern (r = 1, ..., n)  a re  

independent and Gaussian with mean 0 and variance 

Using this  f ac t  we can write 

r = 0,1, ..., n) 
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I n  (81) the crn a r e  a rb i t r a ry  real numbers and the conditional 

expectation is 

argument point 

factor  w i l l  be 

regarded as a function of the c evaluated a t  the (random) r n  
c -  (r = 1, . . . , n). From now on a normalizing rn  - %rl 

denoted by the generic symbol N. Then 
n 
c E2 v-lli -1 1 K n 

(“) (%I  = N i=l C Pi(0)pij(t)E(exp[ r=l C crnErnvrn - r=l r n  rn  

x = ai, x = a . )  
0 t J ern = qrn* 

By our assumptions on the g( t )  process, (82) can a l so  be wri t ten 

Since almost every g( t )  sample function i s  a s tep function, the l i m i t  

2 t 

n + m  r=l 0 
4 = @(S)’~;(S) ds 

n 
l i m  c srnvrn 

ex i s t s  with probability 1 and hence, by dominated convergence, i n  mean square. 

where the in tegra l  with respect t o  

L e t  Qn(t) be the random variable i n  [ ] i n  (83) and put 

w i s  a l i m i t  i n  mean sqmre ( [ 6 ]  M, $2). 

t t 

0 0 

2 1 
Q(t) = @(S)-2g(~) ds - 5 @(s)-2G(s)dy(s). 

From (84) and (85), 1 . i . m .  en(t)  = e ( t ) .  Furthermore 



f o r  some constant33 h, p > 0; and since E{ [e X l w ( t )  112) < oo) 

qn (resp. Denote by ) the  smallest Bore1 f i e l d  relative t o  t 
which the random variables %(O), c(t), qlny ..., 'Inn, (mSP. x ( O ) ,  z(t), 
y(s) ,  0 5 s I t) are measurable. Now 

Since $: ( 7; and since, by inspection of O n ( t ) ,  t he  random variable 

"C n 
E {e i s  measurable relakive t o  L/ t, there follows ( [ 6 ]  I, Thm, 

8.1) 

with probabili ty 1. Finally, (87) implies 

Thus we have shown that 
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e( t>  1 K 
1 . i .m .  p ("'(t) = N C pi(0)p. .(t)E(e 
n + a  j i=l 1J 

(91 )  
N Z(O) = ai, x ( t )  = aj; y(s) ,  o 5 s 5 t). 

By exactly the same argument as i n  Appendix 1 t h e  right side of (91)  can be 

ident i f ied with p (t). 

2. Next we derive the Mtrkov property. For 0 5 7 5 t write 
3 

7' t and l e t  p, 

ables y(s),  T S s I t, are  measurable. Thus q ( T ,  t )  is measurable rela- 

t i v e  t o  the Bore1 f i e l d  generated by and the z(s)*s f o r  T 5 s 5 t. 
With this notation 

be the smallest Bore1 f i e l d  re la t ive t o  which the random vari- 

Now 

K K 

where we have used the f ac t  t h a t  the 

dent of the y ( t )  process. Compring (93) and (94) we obtain 
g(t)  process is  mrkov and i s  indepen- 
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Write p ( t )  = [p,(t), ..., pk( t ) ]  and consider the joint  process 

(x(t), p ( t ) ,  t 2 0). Eqs. (92) and (95) show t h a t  x ( t  + h), p ( t  + h) 

depend only on x ( t ) ,  p ( t )  and on the w(s) increments f o r  t 5 s I t + h. 

Reasoning as on Appendix 2 we concllde t h a t  the joint  process 

(x(t) ,  p ( t ) ,  t h 0) is mrkav. 

3.  W e  now evaluate functions mi and bij defined by 

and 

To simplify computation note t h a t  the conditional expectation i n  (35) 
is readily evaluated, given the extra condition that no jump of ;(a) 

i n  the in te rva l  

occurs, given x - is 

occurs 

(t, t + h); 

t - Xt+h = ai' 

and tbe conditioml probabili ty that no jump 
N N 

- vi'" 
= 1 +o(h) (h + O ) .  (98) 

-1 
Pi#) e 

Also, since p(s)'l is  assumed. bounded, we have 

q( t ,  t + h)  5 f(h)exbYI (99 1 

where Ay = y(t+h) - y(t), X > 0 is constant and f ( h )  is  bounded as h 40.  Put 



and i f  j f i 

where ( for  a sui table  f ( * ) )  

o 5 wi(h), w. .(hJ 5 f (h)e  InY I .  
1 J  

Thus 

i=l 

A simple calculation from (100) yields 

1 2  
l i m  h’h(e. Ix(t) = x)  = a .xp(t)’2 - - 2 J  a .p( t ) -2  J J h + O  

U s i n g  (104)-(106) it i s  now straightforward t o  compute the l i m i t s  ( 9 6 )  and 

(97). The results are 

K 
+ p(t)’2(x - ;)(aj - x ) p  m.(t,x,p) = - V jPj + c VijPi (107) J J id 

and 



where 
K - 

x = C a.p.. 
i=l 1 1  

4. Define 
- 

u.(t ,  X, p) = p(t)-'(aj - x)pj, j = 1, ..., K. 
J 

It w i l l  be shown that the p ( t )  process can be represented as the 

solution of the stochastic d i f f e ren t i a l  system 

where (w(t), t B 0) is the Wiener process introduced i n  (19). W e  shall 

apply a representation theonxu of Doob ([6] VI,  Thm. 3.3), generalized t o  

allow f o r  the f a c t  that only the p ( t )  component of the (x( t ) ,  p ( t )}  pro- 

cess is  continuous (that almost every p( t )  
follows from (104)). 

sample function is continuous 

The p ( t )  process is  obviously bounded; hence the conditions ustlally 

imposed on m and u (E61 VI, $ 3 )  are satisfied. Now l e t  4, be the 

smallest Bore1 f ie ld  with respect t o  which the random variables 

0 i s d t are measurable. Then, since the {x, p} process is hkrkov, the 

evalwtions (lO7), (108) are unchanged i f  the  conditional expectations i n  

(96), (97) are defined relative t o  st. Reasoning as i n  the proof of [6] 
VI,  Thm. 3.3, we conclude t h a t  each process 

x(s),  p(s) ,  

is a martingale which satisfies the conditions of [6] IX, Thm. 5.3. 

if {CJ(t), i?rt; 
That is, 

t B 01 

J J 

is the martingale defined by (112) a d  i f  
jy 

-1 (or 0) where Q .  f 0 (or  0), then the equation 



defines a Uiener process; and by (108), (ll0) t h i s  definit ion of the $(t) 
process i s  independent of the choice of j. 

It retrains t o  ident i fy  the  $(t) process with the w ( t )  process of 

(19 ) .  kt 
t 

0 
3%) = Y ( t >  - J x(s)ds  

t 

0 
= I B(s)dw(s). 

U s i n g  (104) - (106) and (110) w e  f ind that 

Reasoning as before we conclude that the process IT(*), st; t Z 0) is a 
mrtingale.  Since 

it follows by (113) and (115) that 

Hence for each t > 0, $(t) = w ( t )  with probability 1; by continuity t h i s  

implies t h a t  t h e  processes W ( t ) ,  w ( t )  

grated form of (21) now follows fran (113) by inversion. 

h 

am essent ia l ly  identical .  The inte-  



-31- 

References. 

1. R. L. Stratonovich, Conditional mrkov processes, I?leory of Probabi- 
l i t y  and i ts  Applications 2 (2), 1960, pp. 156-178. 

2. G. E. Kolosav and R. L. Stratonovich, A problem of synthesis of an  

optimal regulator by methods of dynami c programmi% Avtomatika i 

Telemekhanika 24 - ( g ) ,  1963, pp. 1165-~73. 

3. W. M. Wonham, Stochastic Problems i n  Optirml Control, FUAS TR 63-14, 
1963- 

4. Investigation of Filter Functions, F i n a l  TR, Contract No. 

~A-36-034-0~~-37082, (Unclassified) U. s . ~ r m y  Ordnance m s s i l e  

Command, Redstone Arsenal, Alabaroa; Jknmry, 1964. 

6. 

7. 

8. 

J. L. mob, Stochastic Processes, John Wiley and Sons, 1953. 

E. B. Dynkin, Markovskie Protsessi, Fizmatgiz, Moscow, 1963. 

K. I to,  On Stochastic Different ia l  Equations, Mem. h e r .  mth.  SOC., 

No. 4, 1951, 

9. I. I. Gihman, On the theory of different ia l  equations of stochastic 

processes, 1. Ukr. mth .  J. 2 (4), 1950, pp, 37-63. 

10. J. F. Barrett,  Application of Kblmogorov's equations t o  randomly dis-  

turbed automatic control systems, Proc. P A C ,  1960 (Automatic and 

Remote Control, Butterworth, Mndon, 1961) Vol. 2, pp. 724-733. 

ll. S.O. Rice, - themtical  analysis of mndom noise, €?ell System Tech. J, 
23, 24, 1944; reprinted i n  Noise and Stochastic Processes (ed. N. W), 

Dover publ., 199. 



P 
$0 


